Problema sobre autocorrelación 3.

Al estimar por MCO un modelo lineal, a partir de 21 observaciones, se obtuvo:

$$\widehat{Y}_t = 1'3 + 0'97 \cdot Y_{t-1} + 2'31 \cdot X_t, \quad d = 1'21,$$
(0'3) (0'18) (0'41)

donde las cifras entre paréntesis son las desviaciones típicas.

Se pide contrastar la presencia de autocorrelación en la perturbación aleatoria.

Solución

Puesto que como regresora aparece la variable dependiente retardada para estudiar la autocorrelación en este modelo hay que utilizar la h de Durbin. En tal caso, se rechaza la hipótesis nula de incorrelación si

$$|h| = \left| \rho \cdot \sqrt{\frac{n}{1 - n \cdot var}} \right| > Z_{1 - \frac{\alpha}{2}},$$

donde var es la varianza estimada del coeficiente correspondiente a la variable retardada y $Z_{1-\frac{\alpha}{2}}$ es el punto de una distribución N(0,1) que deja a su izquierda una probabilidad $1-\frac{\alpha}{2}$.

Es evidente que n=21 y var=0' $18^2=0$ '0324. Por otro lado, como d= 1'21 se tiene que $\rho\simeq 1-\frac{1'21}{2}=0$ '395.

Luego, sin más que sustituir:

$$|h| = \left| 0'395 \cdot \sqrt{\frac{21}{1 - 21 \cdot 0'0324}} \right| = 3'201 > 1'96 = Z_{0'975}.$$

Por tanto, rechazo la hipótesis nula de incorrelación, es decir, hay autocorrelación en la perturbación aleatoria.